A Note on Some Recent Results for the Bernoulli Numbers of the Second Kind
نویسندگان
چکیده
In a recent issue of the Bulletin of the Korean Mathematical Society, Qi and Zhang discovered an interesting integral representation for the Bernoulli numbers of the second kind (also known as Gregory’s coefficients, Cauchy numbers of the first kind, and the reciprocal logarithmic numbers). The same representation also appears in many other sources, either with no references to its author, or with references to various modern researchers. In this short note, we show that this representation is a rediscovery of an old result obtained in the 19th century by Ernst Schröder. We also demonstrate that the same integral representation may be readily derived by means of complex integration. Moreover, we discovered that the asymptotics of these numbers were also the subject of several rediscoveries, including very recent ones. In particular, the firstorder asymptotics, which are usually (and erroneously) credited to Johan F. Steffensen, actually date back to the mid-19th century, and probably were known even earlier.
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملA Note on Partially Degenerate Bernoulli Numbers and Polynomials
In this paper, we consider the partially degenerate Bernoulli numbers and polynomials of the first kind and the second kind and investigate some properties of these numbers and polynomials.
متن کاملA Note on Degenerate Hermite Poly–bernoulli Numbers and Polynomials
In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of d...
متن کاملA Note on a Theorem of Guo, Mező, and Qi
In a recent paper, Guo, Mező, and Qi proved an identity representing the Bernoulli polynomials at non-negative integer points m in terms of the m-Stirling numbers of the second kind. In this note, using a new representation of the Bernoulli polynomials in the context of the Zeon algebra, we give an alternative proof of the aforementioned identity.
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کامل